Mountain Pass solutions for quasi-linear equations via a monotonicity trick

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Behavior for Solutions of Singular Quasi–linear Elliptic Equations

In this paper, for 1 γ 3 our main purpose is to consider the quasilinear elliptic equation: div(|∇u|m−2∇u) + (m− 1)u−γ = 0 on a bounded smooth domain Ω ⊂ RN , N > 1 . We get some first-order estimates of a nonnegative solution u satisfying u = 0 on ∂Ω . For γ = 1 , we find the estimate: limx→∂Ω u(x)/p(δ (x)) = 1 , where p(r) ≈ r m √ m log(1/r) near r = 0 , δ (x) denotes the distance from x to ∂...

متن کامل

Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations

We prove the well-posedness (existence and uniqueness) of renormalized entropy solutions to the Cauchy problem for quasi-linear anisotropic degenerate parabolic equations with L1 data. This paper complements the work by Chen and Perthame [9], who developed a pure L1 theory based on the notion of kinetic solutions.

متن کامل

On the Solutions of Quasi-linear Elliptic Partial Differential Equations*

The literature concerning these equations being very extensive, we shall not attempt to give a complete list of references. The starting point for many more modern researches has been the work of S. Bernstein,f who was the first to prove the analyticity of the solutions of the general equation with analytic and who was able to obtain a priori bounds for the second and higher derivatives of ...

متن کامل

Global Low Regularity Solutions of Quasi-linear Wave Equations

In this paper we prove the global existence and uniqueness of the low regularity solutions to the Cauchy problem of quasi-linear wave equations with radial symmetric initial data in three space dimensions. The results are based on the end-point Strichartz estimate together with the characteristic method.

متن کامل

Instability for Standing Waves of Nonlinear Klein-gordon Equations via Mountain-pass Arguments

We introduce mountain-pass type arguments in the context of orbital instability for Klein-Gordon equations. Our aim is to illustrate on two examples how these arguments can be useful to simplify proofs and derive new results of orbital stability/instability. For a power-type nonlinearity, we prove that the ground states of the associated stationary equation are minimizers of the functional acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2011

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2011.04.014